α-Arrestins Aly1 and Aly2 Regulate Intracellular Trafficking in Response to Nutrient Signaling

نویسندگان

  • Allyson F. O'Donnell
  • Alex Apffel
  • Richard G. Gardner
  • Martha S. Cyert
چکیده

Extracellular signals regulate trafficking events to reorganize proteins at the plasma membrane (PM); however, few effectors of this regulation have been identified. β-Arrestins relay signaling cues to the trafficking machinery by controlling agonist-stimulated endocytosis of G-protein-coupled receptors. In contrast, we show that yeast α-arrestins, Aly1 and Aly2, control intracellular sorting of Gap1, the general amino acid permease, in response to nutrients. These studies are the first to demonstrate association of α-arrestins with clathrin and clathrin adaptor proteins (AP) and show that Aly1 and Aly2 interact directly with the γ-subunit of AP-1, Apl4. Aly2-dependent trafficking of Gap1 requires AP-1, which mediates endosome-to-Golgi transport, and the nutrient-regulated kinase, Npr1, which phosphorylates Aly2. During nitrogen starvation, Npr1 phosphorylation of Aly2 may stimulate Gap1 incorporation into AP-1/clathrin-coated vesicles to promote Gap1 trafficking from endosomes to the trans-Golgi network. Ultimately, increased Aly1-/Aly2-mediated recycling of Gap1 from endosomes results in higher Gap1 levels within cells and at the PM by diverting Gap away from trafficking pathways that lead to vacuolar degradation. This work defines a new role for arrestins in membrane trafficking and offers insight into how α-arrestins coordinate signaling events with protein trafficking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants

Objective(s): Mutant forms FMS-like tyrosine kinase-3 (FLT3), are reported in 25% of childhood acute lymphoid leukemia (ALL) and 30% of acute myeloid leukemia (AML) patients. In this study, drug response, growth promoting, and protein trafficking of FLT3 wild-type was compared with two active mutants (Internal Tandem Duplication (ITD)) and D835Y. Materials and Methods:FLT3 was expressed on fact...

متن کامل

Internalization of Heterologous Sugar Transporters by Endogenous α-Arrestins in the Yeast Saccharomyces cerevisiae

When expressed in Saccharomyces cerevisiae using either of two constitutive yeast promoters (PGK1prom and CCW12prom), the transporters CDT-1 and CDT-2 from the filamentous fungus Neurospora crassa are able to catalyze, respectively, active transport and facilitated diffusion of cellobiose (and, for CDT-2, also xylan and its derivatives). In S. cerevisiae, endogenous permeases are removed from t...

متن کامل

Α-arrestins - new players in Notch and GPCR signaling pathways in mammals.

For many years, β-arrestins have been known to be involved in G-protein-coupled receptor (GPCR) desensitization. However, β-arrestins belong to a family of proteins that act as multifunctional scaffolding proteins, in particular during trafficking of transmembrane receptors. The arrestin family comprises visual arrestins, β-arrestins and α-arrestins. In mammals, the functions of the α-arrestins...

متن کامل

A Comprehensive View of the β-Arrestinome

G protein-coupled receptors (GPCRs) are membrane receptors critically involved in sensing the environment and orchestrating physiological processes. As such, they transduce extracellular signals such as hormone, neurotransmitters, ions, and light into an integrated cell response. The intracellular trafficking, internalization, and signaling ability of ligand-activated GPCRs are controlled by ar...

متن کامل

Arrestins and spinophilin competitively regulate Na+,K+-ATPase trafficking through association with a large cytoplasmic loop of the Na+,K+-ATPase.

The activity and trafficking of the Na(+),K(+)-ATPase are regulated by several hormones, including dopamine, vasopressin, and adrenergic hormones through the action of G-protein-coupled receptors (GPCRs). Arrestins, GPCR kinases (GRKs), 14-3-3 proteins, and spinophilin interact with GPCRs and modulate the duration and magnitude of receptor signaling. We have found that arrestin 2 and 3, GRK 2 a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2010